SOMO to soit a neg to the neg to

Question Paper Code: 90460

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.

madd I:F to otton pages as diff Sixth/Seventh Semester OMD own H (ii)

Electronics and Communication Engineering

EC 8095 - VLSI DESIGN

(Common to : Electrical and Electronics Engineering/Electronics and Instrumentation Engineering/Electronics and Telecommunication Engineering/Instrumentation and Control Engineering/Robotics and Automation)

(Regulations 2017)

Time: Three hours and advantage A proportioned sense of

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Draw a 2-input CMOS NOR gate.
- 2. By what factor R_{DS} should be scaled, if constant electric field scaling is employed?
- 3. Using transmission gate draw a 4:1 MUX.
- 4. What is charge sharing in dynamic CMOS logic?
- 5. State the use of Schmitt Trigger.
- 6. Draw a MUX based negative level sensitive D-latch.
- 7. Compare SRAM and DRAM.
- 8. Draw a 1-transistor DRAM cell.
- 9. Define controllability and observability.
- 10. Mention the advantages of BIST.

PART B — $(5 \times 13 = 65 \text{ marks})$

11.	(a)	With neat diagram, enumerate in detail the DC characteristics of CMOS inverter. (13)			
			Question PaperOCode: 90460		
	(b)	(i)	Analyze the switching characteristics of a CMOS inverter. Deri	ve (6)	
		(ii)	If two CMOS inverters are cascaded with an aspect ratio of 1:1 the		
			determine the inverter-pair delay.	(7)	
12.	(a)	(i)	Design a half adder using static CMOS logic.	(6)	
	ba	(ii)	Design a 4:1 MUX using 2:1 MUX. Realize it using transmissi gate.	on (7)	
			Engineering/Instrumentation and Control Engineering/Robotics and		
	lize a 2-input NOR gate using static CMOS logic, Domino logic a applementary pass transistor logic. Analyze the hardware complexity				
		in te	erms of transistor count.	13)	
13.	(a)	(i)	Enumerate in detail on the design of pulse registers.	(6)	
		(ii)	Give in detail, the design and working of astable sequential circui	its. (7)	
			Or		
	(b)	(i)	Design a master-slave positive edge triggered D-flipflop usitransmission gate.	ing (6)	
		(ii)	Discuss on sense amplifier based registers.	(7)	
14.	(a)			13)	
. 5.			Draw a MUX bened negative level sensitive D-laveb.	10	
			Compare SPAM and DRAM. TO		
	(b)	(i)	Elaborate in detail the design of a 4-bit barrel shifter.	(6)	
		(ii)	Describe the working of 6-transistor SRAM cell.	(7)	

15.	(a)	EX	Explain in detail the basic architecture of FPGA with a neat diagram.			
				(13)		
	. 18		\mathbf{Or}			
	(b)	Enu	umerate in detail the working of			
		(i)	Adhoc Test	(5)		
		(ii)	Scan based Test	(8)		
			PART C — $(1 \times 15 = 15 \text{ marks})$			
16.	(a)	App 8-bit	ly Radix-2 booth encoding to perform multiplication between t numbers (-5) and 4.	two (15)		
			\mathbf{Or}			
	(b)	(i)	Design a 4-bit carry look ahead adder using dynamic CMOS logic deriving the necessary expressions.	c by (6)		
		(ii)	Design a 3-bit even parity generator using NAND gates of Design the circuit using static CMOS logic.	nly. (9)		